skbio.stats.gradient.TrajectoryGradientANOVA#

class skbio.stats.gradient.TrajectoryGradientANOVA(coords, prop_expl, metadata_map, trajectory_categories=None, sort_category=None, axes=3, weighted=False)[source]#

Perform trajectory analysis using the RMS trajectory algorithm.

For each group in a category, each component of the result trajectory is computed as taking the sorted list of samples in the group and taking the norm of the coordinates of the 2nd sample minus 1st sample, 3rd sample minus 2nd sample and so on.

See also

GradientANOVA

Methods (inherited)

get_trajectories

Compute the trajectories for each group and category and run ANOVA.

Special methods (inherited)

__eq__

Return self==value.

__ge__

Return self>=value.

__getstate__

Helper for pickle.

__gt__

Return self>value.

__hash__

Return hash(self).

__le__

Return self<=value.

__lt__

Return self<value.

__ne__

Return self!=value.

__str__

Return str(self).

Details