skbio.stats.distance.DistanceMatrix#

class skbio.stats.distance.DistanceMatrix(data, ids=None, validate=True)[source]#

Store distances between objects.

A DistanceMatrix is a DissimilarityMatrix with the additional requirement that the matrix data is symmetric. There are additional methods made available that take advantage of this symmetry.

Notes

The distances are stored in redundant (square-form) format [1]. To facilitate use with other scientific Python routines (e.g., scipy), the distances can be retrieved in condensed (vector-form) format using condensed_form.

DistanceMatrix only requires that the distances it stores are symmetric. Checks are not performed to ensure the other three metric properties hold (non-negativity, identity of indiscernibles, and triangle inequality) [2]. Thus, a DistanceMatrix instance can store distances that are not metric.

References

Attributes (inherited)

T

Transpose of the dissimilarity matrix.

data

Array of dissimilarities.

default_write_format

dtype

Data type of the dissimilarities.

ids

Tuple of object IDs.

png

Get figure data in PNG format.

shape

Two-element tuple containing the dissimilarity matrix dimensions.

size

Total number of elements in the dissimilarity matrix.

svg

Get figure data in SVG format.

Methods

condensed_form()

Return an array of distances in condensed format.

from_iterable(iterable, metric[, key, keys, ...])

Create DistanceMatrix from all pairs in an iterable given a metric.

permute([condensed, seed])

Randomly permute both rows and columns in the matrix.

to_series()

Create a pandas.Series from this DistanceMatrix.

Methods (inherited)

between(from_, to_[, allow_overlap])

Obtain the distances between the two groups of IDs.

copy()

Return a deep copy of the dissimilarity matrix.

filter(ids[, strict])

Filter the dissimilarity matrix by IDs.

index(lookup_id)

Return the index of the specified ID.

plot([cmap, title])

Create a heatmap of the dissimilarity matrix.

read([format])

Create a new DistanceMatrix instance from a file.

redundant_form()

Return an array of dissimilarities in redundant format.

rename(mapper[, strict])

Rename IDs in the dissimilarity matrix.

to_data_frame()

Create a pandas.DataFrame from this DissimilarityMatrix.

transpose()

Return the transpose of the dissimilarity matrix.

within(ids)

Obtain all the distances among the set of IDs.

write(file[, format])

Write an instance of DistanceMatrix to a file.

Special methods (inherited)

__contains__(lookup_id)

Check if the specified ID is in the dissimilarity matrix.

__eq__(other)

Compare this dissimilarity matrix to another for equality.

__ge__(value, /)

Return self>=value.

__getitem__(index)

Slice into dissimilarity data by object ID or numpy indexing.

__getstate__(/)

Helper for pickle.

__gt__(value, /)

Return self>value.

__le__(value, /)

Return self<=value.

__lt__(value, /)

Return self<value.

__ne__(other)

Determine whether two dissimilarity matrices are not equal.

__str__()

Return a string representation of the dissimilarity matrix.

Details