skbio.stats.composition.ilr_inv#
- skbio.stats.composition.ilr_inv(mat, basis=None, check=True)[source]#
Perform inverse isometric log ratio transform.
This function transforms compositions from the real space to Aitchison geometry. The \(ilr^{-1}\) transform is both an isometry, and an isomorphism defined on the following spaces:
\[ilr^{-1}: \mathbb{R}^{D-1} \rightarrow S^D\]The inverse ilr transformation is defined as follows:
\[ilr^{-1}(x) = \bigoplus\limits_{i=1}^{D-1} x \odot e_i\]where \([e_1,\ldots, e_{D-1}]\) is an orthonormal basis in the simplex.
If an orthonormal basis isn’t specified, the J. J. Egozcue orthonormal basis derived from Gram-Schmidt orthogonalization will be used by default.
- Parameters:
- matarray_like of shape (n_compositions, n_components - 1)
A matrix of ilr-transformed data.
- basisndarray or sparse matrix, optional
Orthonormal basis for Aitchison simplex. Defaults to J. J. Egozcue orthonormal basis.
- checkbool
Check to see if basis is orthonormal.
- Returns:
- ndarray of shape (n_compositions, n_components)
Inverse ilr-transformed matrix.
Notes
If the
basis
parameter is specified, it is expected to be a basis in the Aitchison simplex. If there are \(D - 1\) elements specified inmat
, then the dimensions of the basis needs be \((D-1) \times D\), where rows represent basis vectors, and the columns represent proportions.Examples
>>> import numpy as np >>> from skbio.stats.composition import ilr >>> x = np.array([.1, .3, .6,]) >>> ilr_inv(x) array([ 0.34180297, 0.29672718, 0.22054469, 0.14092516])