skbio.stats.gradient.WindowDifferenceGradientANOVA#
- class skbio.stats.gradient.WindowDifferenceGradientANOVA(coords, prop_expl, metadata_map, window_size, **kwargs)[source]#
Perform trajectory analysis using the modified first difference algorithm.
It calculates the norm for all the time-points and subtracts the mean of the next number of elements specified in window_size and the current element.
- Parameters:
- coordspandas.DataFrame
The coordinates for each sample id
- prop_explarray like
The numpy 1-D array with the proportion explained by each axis in coords
- metadata_mappandas.DataFrame
The metadata map, indexed by sample ids and columns are metadata categories
- window_sizeint or long
The window size to use while computing the differences
- Raises:
- ValueError
If the window_size is not a positive integer
See also
Built-ins
__eq__
(value, /)Return self==value.
__ge__
(value, /)Return self>=value.
__getstate__
(/)Helper for pickle.
__gt__
(value, /)Return self>value.
__hash__
(/)Return hash(self).
__le__
(value, /)Return self<=value.
__lt__
(value, /)Return self<value.
__ne__
(value, /)Return self!=value.
__str__
(/)Return str(self).
Methods
Compute the trajectories for each group and category and run ANOVA.