skbio.stats.gradient.FirstDifferenceGradientANOVA#

class skbio.stats.gradient.FirstDifferenceGradientANOVA(coords, prop_expl, metadata_map, trajectory_categories=None, sort_category=None, axes=3, weighted=False)[source]#

Perform trajectory analysis using the first difference algorithm.

It calculates the norm for all the time-points and then calculates the first difference for each resulting point

See also

GradientANOVA

Built-ins

__eq__(value, /)

Return self==value.

__ge__(value, /)

Return self>=value.

__getstate__(/)

Helper for pickle.

__gt__(value, /)

Return self>value.

__hash__(/)

Return hash(self).

__le__(value, /)

Return self<=value.

__lt__(value, /)

Return self<value.

__ne__(value, /)

Return self!=value.

__str__(/)

Return str(self).

Methods

get_trajectories()

Compute the trajectories for each group and category and run ANOVA.