skbio.stats.gradient.GradientANOVA#
- class skbio.stats.gradient.GradientANOVA(coords, prop_expl, metadata_map, trajectory_categories=None, sort_category=None, axes=3, weighted=False)[source]#
- Base class for the Trajectory algorithms. - Parameters:
- coordspandas.DataFrame
- The coordinates for each sample id 
- prop_explarray like
- The numpy 1-D array with the proportion explained by each axis in coords 
- metadata_mappandas.DataFrame
- The metadata map, indexed by sample ids and columns are metadata categories 
- trajectory_categorieslist of str, optional
- A list of metadata categories to use to create the trajectories. If None is passed, the trajectories for all metadata categories are computed. Default: None, compute all of them 
- sort_categorystr, optional
- The metadata category to use to sort the trajectories. Default: None 
- axesint, optional
- The number of axes to account while doing the trajectory specific calculations. Pass 0 to compute all of them. Default: 3 
- weightedbool, optional
- If true, the output is weighted by the space between samples in the sort_category column 
 
- Raises:
- ValueError
- If any category of trajectory_categories is not present in metadata_map If sort_category is not present in metadata_map If axes is not between 0 and the maximum number of axes available If weighted is True and no sort_category is provided If weighted is True and the values under sort_category are not numerical If coords and metadata_map does not have samples in common 
 
 - Methods - Compute the trajectories for each group and category and run ANOVA. - Special methods (inherited) - __eq__(value, /)- Return self==value. - __ge__(value, /)- Return self>=value. - __getstate__(/)- Helper for pickle. - __gt__(value, /)- Return self>value. - __hash__(/)- Return hash(self). - __le__(value, /)- Return self<=value. - __lt__(value, /)- Return self<value. - __ne__(value, /)- Return self!=value. - __str__(/)- Return str(self). - Details