skbio.table.Table.update_ids#
- Table.update_ids(id_map, axis='sample', strict=True, inplace=True)[source]#
- Update the ids along the given axis. - Parameters:
- id_mapdict
- Mapping of old to new ids. All keys and values in this dict should be strings. 
- axis{‘sample’, ‘observation’}, optional
- Axis to search for id. Defaults to ‘sample’ 
- strictbool, optional
- If - True, raise an error if an id is present in the given axis but is not a key in- id_map. If False, retain old identifier for ids that are present in the given axis but are not keys in- id_map.
- inplacebool, optional
- If - Truethe ids are updated in- self; if- Falsethe ids are updated in a new table is returned.
 
- Returns:
- Table
- Table object where ids have been updated. 
 
- Raises:
- UnknownAxisError
- If provided an unrecognized axis. 
- TableException
- If an id from - selfis not in- id_mapand- strictis- True.
 
 - Examples - Create a 2x3 BIOM table: - >>> data = np.asarray([[0, 0, 1], [1, 3, 42]]) >>> table = Table(data, ['O1', 'O2'], ['S1', 'S2', 'S3']) - Define a mapping of old to new sample ids: - >>> id_map = {'S1':'s1.1', 'S2':'s2.2', 'S3':'s3.3'} - Get the ids along the sample axis in the table: - >>> print(table.ids(axis='sample')) ['S1' 'S2' 'S3'] - Update the sample ids and get the ids along the sample axis in the updated table: - >>> updated_table = table.update_ids(id_map, axis='sample') >>> print(updated_table.ids(axis='sample')) ['s1.1' 's2.2' 's3.3']