skbio.stats.composition.power#
- skbio.stats.composition.power(x, a)[source]#
Perform the power operation.
This operation is defined as follows:
\[`x \odot a = C[x_1^a, \ldots, x_D^a]\]\(C[x]\) is the closure operation defined as:
\[C[x] = \left[\frac{x_1}{\sum_{i=1}^{D} x_i},\ldots, \frac{x_D}{\sum_{i=1}^{D} x_i} \right]\]for some \(D\) dimensional real vector \(x\) and \(D\) is the number of components for every composition.
- Parameters:
- xarray_like of shape (n_compositions, n_components)
A matrix of proportions.
- afloat
A scalar exponent.
- Returns:
- ndarray of shape (n_compositions, n_components)
The matrix where all of the values are non-zero and each composition (row) adds up to 1.
Examples
>>> import numpy as np >>> from skbio.stats.composition import power >>> x = np.array([.1, .3, .4, .2]) >>> power(x, .1) array([ 0.23059566, 0.25737316, 0.26488486, 0.24714631])