skbio.stats.composition.alr_inv#
- skbio.stats.composition.alr_inv(mat, denominator_idx=0)[source]#
Perform inverse additive log ratio transform.
This function transforms compositions from the non-isometric real space of alrs to Aitchison geometry.
\[alr^{-1}: \mathbb{R}^{D-1} \rightarrow S^D\]The inverse alr transformation is defined as follows:
\[alr^{-1}(x) = C[exp([y_1, y_2, ..., y_{D-1}, 0])]\]where \(C[x]\) is the closure operation defined as
\[C[x] = \left[\frac{x_1}{\sum_{i=1}^{D} x_i},\ldots, \frac{x_D}{\sum_{i=1}^{D} x_i} \right]\]for some \(D\) dimensional real vector \(x\) and \(D\) is the number of components for every composition.
- Parameters:
- matarray_like of shape (n_compositions, n_components - 1)
A matrix of alr-transformed data.
- denominator_idxint
The index of the column (2-D matrix) or position (vector) of
mat
which should be used as the reference composition. Default is 0 which specifies the first column or position.
- Returns:
- ndarray of shape (n_compositions, n_components)
Inverse alr-transformed matrix or vector where rows sum to 1.
Examples
>>> import numpy as np >>> from skbio.stats.composition import alr, alr_inv >>> x = np.array([.1, .3, .4, .2]) >>> alr_inv(alr(x)) array([ 0.1, 0.3, 0.4, 0.2])