skbio.table.Table#
- class skbio.table.Table(data, observation_ids, sample_ids, observation_metadata=None, sample_metadata=None, table_id=None, type=None, create_date=None, generated_by=None, observation_group_metadata=None, sample_group_metadata=None, validate=True, observation_index=None, sample_index=None, **kwargs)[source]#
The (canonically pronounced ‘teh’) Table.
Give in to the power of the Table!
Creates an in-memory representation of a BIOM file. BIOM version 1.0 is based on JSON to provide the overall structure for the format while versions 2.0 and 2.1 are based on HDF5. For more information see [1] and [2]
- Raises:
- TableException
When an invalid table type is provided.
Notes
Allowed table types are None, “OTU table”, “Pathway table”, “Function table”, “Ortholog table”, “Gene table”, “Metabolite table”, “Taxon table”
References
[2]D. McDonald, et al. “The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome” GigaScience 2012 1:7
- Attributes:
shape
The shape of the underlying contingency matrix
dtype
The type of the objects in the underlying contingency matrix
nnz
Number of non-zero elements of the underlying contingency matrix
matrix_data
The sparse matrix object
- type
- table_id
- create_date
- generated_by
- format_version
Attributes
default_write_format
dtype
The type of the objects in the underlying contingency matrix
matrix_data
The sparse matrix object
nnz
Number of non-zero elements of the underlying contingency matrix
shape
The shape of the underlying contingency matrix
Built-ins
__eq__
(other)Equality is determined by the data matrix, metadata, and IDs
__ge__
(value, /)Return self>=value.
__getitem__
(args)Handles row or column slices
__getstate__
(/)Helper for pickle.
__gt__
(value, /)Return self>value.
__iter__
()See
biom.table.Table.iter
__le__
(value, /)Return self<=value.
__lt__
(value, /)Return self<value.
__ne__
(other)Return self!=value.
__str__
()Stringify self
Methods
add_group_metadata
(group_md[, axis])Take a dict of group metadata and add it to an axis
add_metadata
(md[, axis])Take a dict of metadata and add it to an axis.
align_to
(other[, axis])Align self to other over a requested axis
align_to_dataframe
(metadata[, axis])Aligns dataframe against biom table, only keeping common ids.
align_tree
(tree[, axis])Aligns biom table against tree, only keeping common ids.
collapse
(f[, collapse_f, norm, ...])Collapse partitions in a table by metadata or by IDs
concat
(others[, axis])Concatenate tables if axis is disjoint
copy
()Returns a copy of the table
data
(id[, axis, dense])Returns data associated with an id
del_metadata
([keys, axis])Remove metadata from an axis
delimited_self
([delim, header_key, ...])Return self as a string in a delimited form
descriptive_equality
(other)For use in testing, describe how the tables are not equal
exists
(id[, axis])Returns whether id exists in axis
filter
(ids_to_keep[, axis, invert, inplace])Filter a table based on a function or iterable.
from_adjacency
(lines)Parse an adjacency format into BIOM
from_hdf5
(h5grp[, ids, axis, parse_fs, ...])Parse an HDF5 formatted BIOM table
from_json
(json_table[, data_pump, ...])Parse a biom otu table type
from_tsv
(lines, obs_mapping, sample_mapping, ...)Parse a tab separated (observation x sample) formatted BIOM table
Returns the fraction of nonzero elements in the table.
get_value_by_ids
(obs_id, samp_id)Return value in the matrix corresponding to
(obs_id, samp_id)
group_metadata
([axis])Return the group metadata of the given axis
head
([n, m])Get the first n rows and m columns from self
ids
([axis])Return the ids along the given axis
index
(id, axis)Return the index of the identified sample/observation.
is_empty
()Check whether the table is empty
iter
([dense, axis])Yields
(value, id, metadata)
iter_data
([dense, axis])Yields axis values
iter_pairwise
([dense, axis, tri, diag])Pairwise iteration over self
length
([axis])Return the length of an axis
max
([axis])Get the maximum nonzero value over an axis
merge
(other[, sample, observation, ...])Merge two tables together
metadata
([id, axis])Return the metadata of the identified sample/observation.
metadata_to_dataframe
(axis)Convert axis metadata to a Pandas DataFrame
min
([axis])Get the minimum nonzero value over an axis
nonzero
()Yields locations of nonzero elements within the data matrix
nonzero_counts
(axis[, binary])Get nonzero summaries about an axis
norm
([axis, inplace])Normalize in place sample values by an observation, or vice versa.
pa
([inplace])Convert the table to presence/absence data
partition
(f[, axis, remove_empty, ignore_none])Yields partitions
rankdata
([axis, inplace, method])Convert values to rank abundances from smallest to largest
read
(file[, format])Create a new
Table
instance from a file.reduce
(f, axis)Reduce over axis using function f
remove_empty
([axis, inplace])Remove empty samples or observations from the table
sort
([sort_f, axis])Return a table sorted along axis
sort_order
(order[, axis])Return a new table with axis in order
subsample
(n[, axis, by_id, ...])Randomly subsample without replacement.
sum
([axis])Returns the sum by axis
to_anndata
([dense, dtype, transpose])Convert Table to AnnData format
to_dataframe
([dense])Convert matrix data to a Pandas SparseDataFrame or DataFrame
to_hdf5
(h5grp, generated_by[, compress, ...])Store CSC and CSR in place
to_json
(generated_by[, direct_io, creation_date])Returns a JSON string representing the table in BIOM format.
to_tsv
([header_key, header_value, ...])Return self as a string in tab delimited form
transform
(f[, axis, inplace])Iterate over axis, applying a function f to each vector.
Transpose the contingency table
update_ids
(id_map[, axis, strict, inplace])Update the ids along the given axis.
write
(file[, format])Write an instance of
Table
to a file.