skbio.table.Table#
- class skbio.table.Table(data, observation_ids, sample_ids, observation_metadata=None, sample_metadata=None, table_id=None, type=None, create_date=None, generated_by=None, observation_group_metadata=None, sample_group_metadata=None, validate=True, observation_index=None, sample_index=None, **kwargs)[source]#
- The (canonically pronounced ‘teh’) Table. - Give in to the power of the Table! - Creates an in-memory representation of a BIOM file. BIOM version 1.0 is based on JSON to provide the overall structure for the format while versions 2.0 and 2.1 are based on HDF5. For more information see [1] and [2] - Attributes:
- shape
- The shape of the underlying contingency matrix 
- dtype
- The type of the objects in the underlying contingency matrix 
- nnz
- Number of non-zero elements of the underlying contingency matrix 
- matrix_data
- The sparse matrix object 
- type
- table_id
- create_date
- generated_by
- format_version
 
- Raises:
- TableException
- When an invalid table type is provided. 
 
 - Notes - Allowed table types are None, “OTU table”, “Pathway table”, “Function table”, “Ortholog table”, “Gene table”, “Metabolite table”, “Taxon table” - References [2]- D. McDonald, et al. “The Biological Observation Matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome” GigaScience 2012 1:7 - Attributes - The type of the objects in the underlying contingency matrix - The sparse matrix object - Number of non-zero elements of the underlying contingency matrix - The shape of the underlying contingency matrix - Methods - add_group_metadata(group_md[, axis])- Take a dict of group metadata and add it to an axis - add_metadata(md[, axis])- Take a dict of metadata and add it to an axis. - align_to(other[, axis])- Align self to other over a requested axis - align_to_dataframe(metadata[, axis])- Aligns dataframe against biom table, only keeping common ids. - align_tree(tree[, axis])- Aligns biom table against tree, only keeping common ids. - collapse(f[, collapse_f, norm, ...])- Collapse partitions in a table by metadata or by IDs - concat(others[, axis])- Concatenate tables if axis is disjoint - copy()- Returns a copy of the table - data(id[, axis, dense])- Returns data associated with an id - del_metadata([keys, axis])- Remove metadata from an axis - delimited_self([delim, header_key, ...])- Return self as a string in a delimited form - descriptive_equality(other)- For use in testing, describe how the tables are not equal - exists(id[, axis])- Returns whether id exists in axis - filter(ids_to_keep[, axis, invert, inplace])- Filter a table based on a function or iterable. - from_adjacency(lines)- Parse an adjacency format into BIOM - from_hdf5(h5grp[, ids, axis, parse_fs, ...])- Parse an HDF5 formatted BIOM table - from_json(json_table[, data_pump, ...])- Parse a biom otu table type - from_tsv(lines, obs_mapping, sample_mapping, ...)- Parse a tab separated (observation x sample) formatted BIOM table - Returns the fraction of nonzero elements in the table. - get_value_by_ids(obs_id, samp_id)- Return value in the matrix corresponding to - (obs_id, samp_id)- group_metadata([axis])- Return the group metadata of the given axis - head([n, m])- Get the first n rows and m columns from self - ids([axis])- Return the ids along the given axis - index(id, axis)- Return the index of the identified sample/observation. - is_empty()- Check whether the table is empty - iter([dense, axis])- Yields - (value, id, metadata)- iter_data([dense, axis])- Yields axis values - iter_pairwise([dense, axis, tri, diag])- Pairwise iteration over self - length([axis])- Return the length of an axis - max([axis])- Get the maximum nonzero value over an axis - merge(other[, sample, observation, ...])- Merge two tables together - metadata([id, axis])- Return the metadata of the identified sample/observation. - metadata_to_dataframe(axis)- Convert axis metadata to a Pandas DataFrame - min([axis])- Get the minimum nonzero value over an axis - nonzero()- Yields locations of nonzero elements within the data matrix - nonzero_counts(axis[, binary])- Get nonzero summaries about an axis - norm([axis, inplace])- Normalize in place sample values by an observation, or vice versa. - pa([inplace])- Convert the table to presence/absence data - partition(f[, axis, remove_empty, ignore_none])- Yields partitions - rankdata([axis, inplace, method])- Convert values to rank abundances from smallest to largest - read([format])- Create a new - Tableinstance from a file.- reduce(f, axis)- Reduce over axis using function f - remove_empty([axis, inplace])- Remove empty samples or observations from the table - sort([sort_f, axis])- Return a table sorted along axis - sort_order(order[, axis])- Return a new table with axis in order - subsample(n[, axis, by_id, ...])- Randomly subsample without replacement. - sum([axis])- Returns the sum by axis - to_anndata([dense, dtype, transpose])- Convert Table to AnnData format - to_dataframe([dense])- Convert matrix data to a Pandas SparseDataFrame or DataFrame - to_hdf5(h5grp, generated_by[, compress, ...])- Store CSC and CSR in place - to_json(generated_by[, direct_io, creation_date])- Returns a JSON string representing the table in BIOM format. - to_tsv([header_key, header_value, ...])- Return self as a string in tab delimited form - transform(f[, axis, inplace])- Iterate over axis, applying a function f to each vector. - Transpose the contingency table - update_ids(id_map[, axis, strict, inplace])- Update the ids along the given axis. - write(file[, format])- Write an instance of - Tableto a file.- Special methods - __eq__(other)- Equality is determined by the data matrix, metadata, and IDs - __getitem__(args)- Handles row or column slices - __iter__()- See - biom.table.Table.iter- __ne__(other)- Return self!=value. - __str__()- Stringify self - Special methods (inherited) - __ge__(value, /)- Return self>=value. - __getstate__(/)- Helper for pickle. - __gt__(value, /)- Return self>value. - __le__(value, /)- Return self<=value. - __lt__(value, /)- Return self<value. - Details - default_write_format = 'biom'#
 - dtype#
- The type of the objects in the underlying contingency matrix 
 - matrix_data#
- The sparse matrix object 
 - nnz#
- Number of non-zero elements of the underlying contingency matrix 
 - shape#
- The shape of the underlying contingency matrix 
 - __getitem__(args)[source]#
- Handles row or column slices - Slicing over an individual axis is supported, but slicing over both axes at the same time is not supported. Partial slices, such as foo[0, 5:10] are not supported, however full slices are supported, such as foo[0, :]. - Parameters:
- argstuple or slice
- The specific element (by index position) to return or an entire row or column of the data. 
 
- Returns:
- float or spmatrix
- A float is return if a specific element is specified, otherwise a spmatrix object representing a vector of sparse data is returned. 
 
- Raises:
- IndexError
- If the matrix is empty 
- If the arguments do not appear to be a tuple 
- If a slice on row and column is specified 
- If a partial slice is specified 
 
 
 - Notes - Switching between slicing rows and columns is inefficient. Slicing of rows requires a CSR representation, while slicing of columns requires a CSC representation, and transforms are performed on the data if the data are not in the required representation. These transforms can be expensive if done frequently.